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ABSTRACT
Radiotherapy in cancer treatment involves the use of ionizing radiation for cancer cell killing. 
Although radiotherapy has shown significant improvements on cancer recurrence and mortality, 
several radiation-induced adverse effects have been documented. Of these adverse effects, 
radiation-induced cardiovascular disease (CVD) is particularly prominent among patients receiving 
mediastinal radiotherapy, such as breast cancer and Hodgkin’s lymphoma patients. A number of 
mechanisms of radiation-induced CVD pathogenesis have been proposed such as endothelial 
inflammatory activation, premature endothelial senescence, increased ROS and mitochondrial 
dysfunction. However, current research seems to point to a so-far unexamined and potentially 
novel involvement of epigenetics in radiation-induced CVD pathogenesis. Firstly, epigenetic 
mechanisms have been implicated in CVD pathophysiology. In addition, several studies have 
shown that ionizing radiation can cause epigenetic modifications, especially DNA methylation 
alterations. As a result, this review aims to provide a summary of the current literature linking DNA 
methylation to radiation-induced CVD and thereby explore DNA methylation as a possible con-
tributor to radiation-induced CVD pathogenesis.
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Introduction

Mediastinal radiotherapy is an effective means 
employed in the treatment of breast cancer, lung 
cancer, oesophageal cancer, thymoma, and med-
iastinal lymphoma (Hodgkin’s lymphoma (HL), 
primary mediastinal B-cell lymphoma (PMBCL), 
and T-lymphoblastic lymphoma) [1–5]. However, 
radiotherapy comes with definite side effects such 
as radiation-induced cardiovascular disease 
(CVD). In breast cancer, significantly higher rate 
of major coronary events were observed in irra-
diated left-sided breast cancer patients over their 
right-sided breast cancer counterparts [6]. 
A reason for this difference could be the different 
mean heart doses after left sided and right sided 
breast cancer radiotherapy being 3.6 and 1.9 Gy 
respectively [6–8]. As for Hodgkin’s lymphoma, 
treatment most commonly employs, in addition 
to radiotherapy, cardiotoxic chemotherapeutic 
agents e.g. anthracycline. Consequently, lym-
phoma survivors have a 5.3–7.3 times increased 
risk of death from cardiac mortality when com-
pared to the general population [9,10]. The 
mechanisms underlying radiation-induced CVD 
are not completely understood. Moreover, 
a possible contribution of epigenetics mechanisms 
has recently been proposed.

Previous research has linked altered DNA 
methylation to the development of many diseases 
including CVD [11,12]. Conversely, ionizing 
radiation has been shown to cause DNA methyla-
tion alterations both ��� ������ and ��� ����� [13–16]. 
Considering the common occurrence of DNA 
methylation alterations in CVD and after ionizing 
radiation exposure, we suggest a previously unad-
dressed involvement of DNA methylation in radia-
tion-induced CVD.

Radiation in cancer therapy

Radiation therapy employs high doses of ionizing 
radiation to kill cancer cells and shrink tumours. 
Radiation exerts its signature lethal cellular effects 
either directly or indirectly. Indirect effects involve 
the hydrolysis of water molecules to produce free 
radicals which can damage cellular compounds, 
such as DNA [17]. Several factors affect the biolo-
gical effectiveness of radiation, namely the linear 

energy transfer (LET), total dose, fractionation 
rate, and radiosensitivity of the targeted cells or 
tissues [18]. LET is the energy transferred to the 
tissue by ionizing radiation (IR) per unit tract 
length. Simply, more charged, slower moving 
alpha particles and neutrons have higher LET 
and subsequently deliver more cell damaging 
energy to tissues than lesser charged, faster mov-
ing X-rays and γ-rays [19].

Despite the beneficial outcomes of cancer radio-
therapy, cardiac toxicity occurring due to inciden-
tal heart irradiation is an undesirable healthy 
tissue side effect [7]. Previously, the heart was 
considered insensitive to radiation doses less than 
30 Gy in accordance to the law of Bergonié and 
Tribondeau [20,21]. According to which, the 
degree of radiosensitivity of a biological tissue 
is dependent on its growth rate and degree 
of differentiation. Consequently, the heart with 
its non-dividing tissue was dubbed rather non- 
radiosensitive [21]. However, it was shown that 
the incidence of excess major coronary events 
increased by 7.4% per 1 Gy increase in the mean 
heart dose delivered by breast cancer radiotherapy 
with no observed safe threshold of dose [6].

Radiation-induced CVD manifestations

Radiation-induced CVD can manifest in different 
ways: coronary heart disease, pericarditis, cardiomyo-
pathy and valvular heart disease (Figure 1). Due to 
contemporary radiation-sparing techniques including 
prone position radiotherapy, image- and dose- guided 
radiotherapy, intensity modulated radiation therapy 
(IMRT), stereotactic body radiation therapy (SBRT) 
and deep inspirational breath hold (DIBH), the inci-
dence of acute pericarditis and cardiomyopathy has 
been reduced [22–25]. Consequently, coronary heart 
disease accounts for most of the cardiac mortality 
attributable to radiotherapy with the first signs of 
cardiac toxicity typically appearing after 10–15 years 
of follow-up [26–28]. Risk factors for the development 
of radiation-induced CVD strongly overlap with con-
ventional risk factors for CVD, such as diabetes, 
hypertension, obesity, smoking, chronic obstructive 
pulmonary disease (COPD) and hypercholesterole-
mia. Additionally, therapy-dependent factors such as 
the cumulative dose from radiotherapy, 

2 M. SALLAM ET AL.



chemotherapeutics (e.g. anthracyclins) and regular 
analgesic use represent additional risk factors [6,29].

�������������	
��� 
������ ����� �������

Radiation-induced coronary heart disease (CHD) - 
also referred to as myocardial ischaemia- is caused 
by atherosclerosis of medium and large vessels. 
The pathogenesis of atherosclerosis involves 
a complex interplay of lipid accumulation, local 
inflammation and smooth muscle cell proliferation 
resulting in the formation of atherosclerotic pla-
ques. Stable atherosclerotic plaques may narrow 
the lumen and hamper blood flow. However, 
unstable plaques may rupture and cause total 
occlusion of blood flow through thrombosis, lead-
ing to myocardial infarction. The risk of develop-
ing radiation-induced CHD is proportional to 
dose. This risk also increases within the first 
5 years after exposure to radiation and continues 
for at least 20 years. In addition, radiation-induced 
CHD occurs at � 10% of the tolerance dose of 
other cardiac tissues (e.g. 36–40 Gy mean heart 
dose for the pericardium and 40 Gy for the myo-
cardium) [6,30,31].

Interestingly, similar radiation-induced athero-
sclerotic changes in the carotid artery were 
observed in Hodgkin’s lymphoma patients who 
received neck radiotherapy [32,33]. This arterial 
thickening leads to an increased relative risk for 
transient ischaemic attack or ischaemic stroke 
( � 2 general population risk) [34,35].

�������������	
��� ���
������

Radiation-induced pericarditis describes a state of 
acute or delayed onset pericardial inflammation. 
Acute radiation-induced pericarditis is an early 
side effect to high radiation doses. The tolerance 
dose of human pericardium is estimated to be 
a mean heart dose higher than 36 or 40 Gy or 
a dose of 50 Gy administered to more than 30% of 
the heart. Consequently, due to current radiation- 
sparing techniques, acute radiation-induced peri-
carditis is considered very rare. On the other hand, 
chronic radiation-induced pericarditis is one of the 
most common manifestations of radiation- 
induced CVD presenting months to years after 
radiotherapy. However, its risk has also decreased 
significantly due to the same radiation-sparing 

������� �	� Radiation-induced CVD presentation.
Made with Microsoft Powerpoint using images from Server Medical Art (https://smart.servier.com/). 
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techniques. Chronic radiation-induced pericarditis 
patients develop fibrous thickening of the pericar-
dium even before manifestation of symptoms. This 
pericardial thickening might progress to chronic 
constrictive pericarditis which could then lead to 
intractable heart failure and will require pericar-
diectomy when it becomes symptomatic 
[30,36,37].

�������������	
��� 
������������

Radiation-induced cardiomyopathy most com-
monly occurs after previous valvular disease or 
myocardial infarction. The tolerance dose of the 
human myocardium is approximately 40 Gy. 
Consequently, pronounced radiation-induced car-
diomyopathy occurs at higher doses. The most 
probable mechanism behind radiation-induced 
cardiomyopathy is radiation-induced microvascu-
lature damage leading to capillary loss and myo-
cardial hypoxia and cell death. Dead cells are 
replaced by fibrotic tissue leading to a reduction 
of myocardial elasticity and distensibility [30,31].

�������������	
��� ����	��� �������

Radiation-induced valvular disease risk is dose 
dependent with delayed onset (up to 20 years 
after radiotherapy). It leads to endocardial fibrosis 
which starts by thickening and calcification of the 
valvular endocardium [38,39].

Mechanisms of radiation-induced CVD

Radiation-induced CVD pathophysiology has been 
extensively described in literature [30,31,40–45]. 
Inflammatory changes as well as reactive oxygen 
species (ROS) production appear to be the main 
causes of the early radiation-induced cardiac tissue 
damage. On the other hand, persistence of this 
state of inflammation and oxidative stress results 
in the delayed radiation-induced tissue damage 
[44–47].

An early event in radiation-induced cardiac 
effects is NF-κB activation. NF-κB is 
a transcription factor implicated in the regulation 
of immune cell maturation, cell survival, and 
inflammation signalling pathways [48]. IR acti-
vates NF-κB through ROS and double stranded 

breaks (DSBs) as well as damage-associated mole-
cular patterns (DAMPs) released from stressed or 
dying cells [42]. DAMP binding to endothelial 
cells also activates MAPK, and interferon regula-
tory factor 3 (IRF3) signalling [42,49]. This leads 
to the expression of various pro-inflammatory 
cytokines (e.g. Interleukins 1 & 6, interferon-γ 
(IFN-γ), and Tumour Necrosis Factor (TNF-α)), 
chemokines (e.g. Monocyte chemoattractant pro-
tein-1 or MCP-1), cell adhesion molecules (e.g. 
Vascular cell adhesion molecule 1 or VCAM-1 
and E-Selectin) and matrix metalloproteinases. 
This ultimately initiates an acute inflammatory 
state with endothelial activation and inflammatory 
cell recruitment within minutes of IR exposure. 
The recruited inflammatory cells (mainly neutro-
phils) add to the inflammatory state and secrete 
pro-fibrotic transforming growth factor beta 
(TGF-β). TGF-β has been shown to initiate myo-
cardial remodelling by inducing cardiac fibroblast 
differentiation into myofibroblast with increased 
collagen deposition and eventual fibrosis [50].

In addition to chronic inflammation, chronic 
oxidative stress is an important pathophysiologic 
mechanism of radiation-induced CVD. As pre-
viously mentioned, IR-induced ROS play a role 
in the activation of NF-κB. In addition, ROS upre-
gulate several enzymes such as nicotinamide ade-
nine dinucleotide phosphate oxidase (NADPH 
oxidase), lipoxygenases (LOXs), nitric oxide 
synthase (NOS), and cyclooxygenases (COXs). 
These enzymes contribute to the acute and chronic 
effects of oxidative stress by inducing production 
of inflammatory and pro-fibrotic cytokines, pros-
taglandin production, lipid peroxidation and inhi-
bition of DNA repair [51].

Interestingly, recent studies showed an activa-
tion of nucleotide-binding domain and leucine- 
rich-repeat-containing family pyrin 3 (NLRP3) 
inflammasome after thoracic irradiation of 
C57BL/6 mice [52]. Irradiation of THP-1 mono-
cytes led to a similar inflammasome activation 
resulting in increased expression of interleukin 
−1β (IL-1β) and IL-18 [52,53]. This is especially 
important as IL-1 secretion was suggested to par-
ticipate in the development of radiation-induced 
CVD. This was further evidenced by amelioration 
of radiation induced sustained expression of 
inflammatory mediators in mice after 
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administration of IL-1β blocker directly after irra-
diation for 2 weeks [54,55].

This state of inflammation and oxidative stress 
is suggested to initiate a number of pathophysio-
logic dysfunctions. The first is cell death and pre-
mature endothelial senescence [56]. Aside from 
the direct apoptotic effects of radiation, irradiation 
of cardiac myocytes stimulates calcium release 
from the endoplasmic reticulum. This causes mito-
chondrial calcium overload, mitochondrial mem-
brane swelling and release of apoptotic factors 
[44]. On the other hand, endothelial cell senes-
cence occurs as a result of activation of Ataxia 
telangiectasia mutated (ATM)/p53/p21 and pro-
tein Kinase B/phosphatidylinositol 3-kinase/ 
mechanistic target of rapamycin (Akt/PI3K/ 
mTOR) pathways [42,56]. In addition, IL-6 
induced by NF-κB activation has been previously 
identified as a critical controller of autocrine 
senescence [57–59]. Finally, accelerated telomere 
shortening induced by oxidative stress and mito-
chondrial dysfunction also contribute to acceler-
ated endothelial senescence [57–60].

The second contributing pathophysiologic dys-
function is impaired endothelium-dependent relaxa-
tion of blood vessels. This is mediated mainly by 
endothelial nitric oxide synthase (eNOS) uncoupling 
and direct inactivation of NO by superoxide radicals 
leading to diminished vasodilation [61–64]. Senescent 
endothelial cells also contribute to decreased NO pro-
duction due to their lowered eNOS activity [65]. In 
addition, decreased vasodilating prostacyclin and 
increased vasoconstrictive endothelin-1 and angioten-
sin-II levels contribute to chronic vasoconstriction 
[66,67]. The third contributing pathophysiologic dys-
function is mitochondrial dysfunction. Mitochondrial 
DNA is especially sensitive to radiation-induced 
damage due to its limited repair capacity, lack of 
protective histones, a high exon/intron ratio and its 
close proximity to the electron transport chain [42]. 
Furthermore, radiation-induced ROS can cause 
mutations in mitochondrial DNA as well as damage 
or alter the expression of proteins required for cri-
tical mitochondrial and cellular functions. The 
damaged mitochondria then generate more ROS 
which starts a vicious cycle of mitochondrial ROS 
generation [51,68].

The final contributing pathophysiologic dys-
function is initiation of a pro-coagulative and pro- 

thrombotic state. Endothelial cell damage with 
secreted pro-inflammatory cytokines induces the 
secretion of von Willebrand factor (vWF), platelet- 
activating factor and tissue factor while reducing 
thrombomodulin and prostacyclin production 
[42]. In addition, TGF-β released from irradiated 
endothelial cells induces fibrogenic activation of 
vascular smooth muscle cells leading to increased 
proliferation and migration [69]. This, along with 
decreased NO availability, leads to increased plate-
let aggregation and thrombus formation [42]. 
Recently, the European Society for Medical 
Oncology (ESMO) proposed aspirin as an antipla-
telet as one of the cardioprotective treatments for 
patients receiving radiotherapy and having a high 
risk for CVD [70]. However, up to this moment, 
antiplatelet therapy has not proven to be beneficial 
in radiation-induced CVD [71–73]. Consequently, 
non-traditional therapies against CVD may need 
to be further investigated.

DNA methylation: a possible overlooked 
mechanism in radiation-induced CVD?

Epigenetic modifications involve different 
mechanisms, such as histone modifications, 
changes in DNA methylation and regulation of 
gene expression through micro-RNAs. Epigenetic 
modifications induce changes in gene expression 
that can occur without any changes in the primary 
DNA sequence. Moreover, epigenetic alterations 
could be transmitted to future progeny [74]. 
Alterations in DNA methylation are the most 
widely researched epigenetic changes and will be 
the focus of the current review.

���������������

DNA methylation involves methylation of 
a cytosine base in a CpG dinucleotide to pro-
duce 5-methyl cytosine (5-mC). A process that is 
essential for silencing of transposable elements, 
genomic imprinting and X-chromosome inacti-
vation [75]. 5-mC represents only ~1% of 
nucleic acids in the genome [76–78]. This low 
CpG frequency occurs due to cytosine deamina-
tion. Spontaneous cytosine deamination yields 
uracil. This uracil is then repaired by uracil 
glycosylase to cytosine. On the other hand, 
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deamination of 5-mC yields thymine which is 
not corrected by uracil glycosylase leading to 
a C/T transition. This C/T transition is the 
most frequent mutation observed in human dis-
eases occuring 10–50 times more frequently than 
all other base transitions. Consequently, cytosine 
deamination is the main reason for the observed 
frequency of CpG dinucleotides being lower 
than the expected CpG frequency in the absence 
of deamination [79,80]. The biological signifi-
cance of this C/T transition is especially appar-
ent when considering arginine deamination. The 
codon for arginine aminoacid (CGA) can be 
changed upon oxidative deamination of 5-mC 
into a stop codon (TGA). The premature 
appearance of a stop codon leads to the produc-
tion of truncated and usually inactive pro-
teins [81].

The majority of CpG dinucleotides in the 
human genome are heavily methylated (~70%) 
with the rest being unmethylated and mainly part 
of so called CpG islands (CGIs). CGIs are defined 
as regions of DNA (>200 bps) that have a GC 
content of at least 50%, observed CpG frequency 
of at least 60% of the expected CpG frequency, 
lack methylation and consequently are not tran-
scriptionally silenced [82]. The expected CpG fre-
quency in the previous definition is the CpG 
frequency if no cytosine deamination occurs. 
This high content of CpGs allows for DNA methy-
lation-mediated regulation of gene expression. 
About 70% of gene promoters are associated with 
these CGIs and around 50% of these CGIs contain 
transcription start sites [83]. Hyper- or hyop-
methylation of DNA has long been considered to 
inhibit or activate gene expression, respectively. 
However, the relationship between the DNA 
methylation state and gene expression is actually 
more complex as will be discussed later. 
Nonpromoter CGIs are CGIs that can be found 
in inter- and intragenic sequences. These CGIs 
represent either alternative transcription start 
sites of protein-coding genes or noncoding RNAs 
[84,85]. Intragenic or gene body CGIs that are 
present in actively expressed genes show increased 
DNA methylation. This can be due to gene body 
CGI’s ability to block transcription at intragenic 
promoters, affect intragenic repetitive element 

activity`and alter mRNA splicing by destabilizing 
nucleosomes at intron-exon junctions [86]. In gen-
eral, methylation at CGIs is relatively stable in 
normal healthy tissue with major methylation pat-
tern alterations associated with various disease 
states including cancer [87].

Historically, DNA methylation can be classified 
into two main types: �	� ����� 
	��������� which 
happens mainly in the developing embryo and 

����	����	� 
	��������� which maintains the 
methylation patterns from the parent strand in 
the daughter strand during replication. 
Consequently, DNA methylation is an epigenetic 
pattern that is maintained in cellular progeny and 
is normally stable in non-dividing cells [88,89].

DNA methylation is carried out by the action of 
DNA methyltransferases or DNMTs. Initiation 
of DNA methylation in the growing embryo dur-
ing implantation occurs under the effects of the �	�
�����DNMTs (DNMT-3a and −3b) with the help 
of DNMT3 like (DNMT3l). Here, the �	� �����
DNMTs transfer methyl groups from �-adenyl 
methionine (SAM) to cytosines of the unmethy-
lated DNA strand. DNMT3l is a DNMT3 family 
member which is incapable of individual methyl-
transferase activity but increases the activity of 
DNMT-3a and −3b by up to threefold [89]. 
Following this initial methylation step, the main-
tenance DNMT (DNMT1) then replicates the 
methylation pattern in following cell divisions. 
There, DNMT1 methylates hemimethylated CpG 
dinucleotides at the replication fork where newly 
biosynthesized DNA strands are directly methy-
lated (Figure 2) [78,89,90]. This ‘maintenance’ 
thereby allows inheritance of the methylation pat-
terns of the parent cell. The addition of a methyl 
group to C5 of a cytosine leads to the production 
of a stable covalent bond that requires a high 
degree of energy to be broken. An observation 
that led to the mistaken belief of the irreversibility 
of DNA methylation [91,92].

While DNA methylation patterns are fairly 
stable over time, DNA can be demethylated as 
well. DNA demethylation can occur through pas-
sive and active mechanisms. Passive demethylation 
occurs by inhibition of -or reduction in- DNMT1 
levels. This inhibition or reduction of DNMT1 
allows newly incorporated cytosine to remain 
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unmethylated thereby causing a replication- 
dependent dilution of 5-mC [78,93]. Active 
demethylation involves the modification of the 
methyl group of 5-mC by enzymatic action and 
subsequent restoration of the non-methylated 
cytosine by DNA repair. Active DNA demethyla-
tion is mainly mediated by the actions of ten- 
eleven translocation (TET) enzyme [83].

����� ��������� ����
������������������ ����
����

Radiation has been shown in previous studies to 
cause DNA methylation alterations [15,94–98]. 
However, the interplay between IR and DNA 
methylation is highly complex and may be tissue- 
dependent as well as model and strain-specific 
[99]. A summary of the literature [13–16,94-96,-
100–109] addressing the effect of radiation on 
DNA methylation is provided in Table 1 of 
Supplementary Materials.

Research addressing radiation-induced DNA 
methylation alterations was found to involve dif-
ferent radiation types, doses and sampling times. 
Subsequently, the task of arriving to a simple con-
clusion regarding the exact effects of IR on DNA 
methylation becomes extremely difficult. Some 

studies address the effects of IR exposure during 
spaceflight. Subsequently, those employ low doses 
of high LET protons and heavier high atomic 
number and energy (HZE) ions such as 56Fe radia-
tion [94,96,107] . On the other hand, studies that 
address the effects of the medicals application of 
radiation tend to use different types and doses of 
radiation in an attempt to mimic the doses regu-
larly received by patients. In addition, even among 
those studies, different doses, dose intensities and 
study durations are employed. This is because of 
the varying aims of these studies which range from 
the investigation of radiation-induced carcinogen-
esis, radiation-induced genomic instability and 
bystander effects [13–15,95,101,102,109,110] to 
cellular responses to radiation and radiosensitivity 
[100,103,104,108]. In addition, some studies 
addressed the difference between the effects of IR 
on somatic and germinal tissues [16].

Another important and somewhat confounding 
aspect of the effects of IR on DNA methylation is 
the common use of ��� ����� animal models with 
rather short lifespan compared to humans. This is 
because the late effects of IR tend to develop in 
humans several years after the initial radiation. 
Consequently, investigating these late side effects 
in animal models requires taking into 

������� 
	� The writers of DNA methylation. DNMTs transfer a methyl group from SAM to the 5th carbon of cytosine. (A) ��� �����
methylation process in the developing embryo by the action of DNMT3a and DNMT3b. (B) Maintenance methylation process during 
DNA replication to maintain the methylation profile in the daughter cells by the action of DNMT1 present at the replication fork on 
hemimethylated DNA. DNMT: DNA methyltransferase, SAM: S – adenosyl methionine, SAH: S-adenosyl-L-homocysteine.
Made with Biorender (biorender.com). 
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consideration the equivalent age of the animals 
[111]. This is indeed difficult as there are wide 
variations in the developmental durations and 
phases of these animals versus humans. 
Consequently, special considerations to the exact 
developmental stage of the used animal model are 
necessary to correlate the results to human 
stage [112].

Despite these difficulties, these studies share 
trends in DNA methylation alterations in 
response to IR analysed on both a global and 
a gene-specific scale. Global DNA methylation 
offers a representation of the total 5-mC content 
in the genome, but lacks gene-specific informa-
tion. On the other hand, gene-specific methyla-
tion focuses on the methylation alterations of 
specific genes. In Figure 3, we attempt to sum-
marize the studies addressing the effect of 

radiation on DNA methylation from a global 
DNA methylation perspective. In Figure 3, we 
observe a general trend of radiation-induced 
global hypomethylation which persists for sev-
eral months in a number of studies employing 
animal models. This suggests a link between 
DNA methylation alterations and IR-induced 
late effects observed years after radiotherapy 
[14,94,96,110]. Global hypomethylation is mainly 
evaluated by the methylation of DNA repetitive 
elements (REs) which account for about 50% of 
the human genome. Of which, Alu element 
(Alu) and long interspersed element-1 (LINE-1) 
are the most abundant human RE sequences. 
Hypomethylation of these REs will therefore 
lead to their reactivation, retrotransposition and 
resultant genomic instability [113]. On the other 
hand, attempting a similar overview for gene- 
specific methylation is more difficult. Different 
studies reported different sets of methylated 
genes with no clear patterns. Of note, IR was 
reported to elicit both hyper- and hypo- 
methylation of individual genes. However, over-
all radiation-induced gene-specific hypermethy-
lation occurred at a higher frequency than gene- 
specific hypomethylation.

Within these literature studies, a number of 
possible mechanisms have been put forward 
(Figure 4). The first mechanism involves ROS 
produced by radiation-induced water hydrolysis. 
These ROS are able to alter DNA methylation 
patterns through several ways [114] . ROS may 
act directly on the DNA by oxidizing the guanine 
base in CGIs forming 8-oxo-20-deoxyguanosine 
(8-OHdG), which can be repaired by its removal 
by 8-oxoguanine DNA glycosylase (OGG1) fol-
lowed by base excision repair (BER). If not 
repaired, 8-OHdG can prevent the methylation of 
the adjacent cytosine leading to subsequent hypo-
methylation. Alternatively, ROS may directly con-
vert 5-mC to 5-hydroxyl mC by interaction of 
DNA with hydroxyl radicals. ROS may affect 
DNA methylation indirectly by altering the activ-
ity of methylation related enzymes [114]. 
However, ROS effects on DNMTs seem to be 
bidirectional. ROS can lead to hypermethylation 
by upregulating DNMTs or increasing their 
recruitment by H2O2. ROS can also lead to hypo-
methylation by reducing the availability of SAM 

����� �	� Functional analysis of CVD differentially methylated 
genes in literature.

PANTHER Pathways
Number 
of genes

raw 
P-value

False 
Discovery 

Rate (FDR)

JAK/STAT signalling pathway 3 0.0000 0.0010
Interferon-gamma signalling 

pathway
3 0.0001 0.0035

PI3 kinase pathway 3 0.0003 0.0112
Interleukin signalling pathway 3 0.0012 0.0393
PDGF signalling pathway 3 0.0048 0.1300
Angiogenesis 3 0.0076 0.1770
TGF-beta signalling pathway 2 0.0222 0.4040
Inflammation mediated by 

chemokine and cytokine 
signalling pathway

3 0.0214 0.4380

Androgen/estrogene/ 
progesterone biosynthesis

1 0.0295 0.4830

5-Hydroxytryptamine 
degredation

1 0.0494 0.7360

Adrenaline and noradrenaline 
biosynthesis

1 0.0667 0.7810

Axon guidance mediated by Slit/ 
Robo

1 0.0624 0.7870

CCKR signalling map 2 0.0606 0.8280
Dopamine receptor mediated 

signalling pathway
1 0.1250 1.0000

p53 pathway 1 0.1840 1.0000
Wnt signalling pathway 2 0.1660 1.0000
VEGF signalling pathway 1 0.1470 1.0000
p53 pathway feedback loops 2 1 0.1110 1.0000
Ras Pathway 1 0.1590 1.0000
Oxidative stress response 1 0.1210 1.0000
Gonadotropin-releasing hormone 

receptor pathway
1 0.4170 1.0000

Endothelin signalling pathway 1 0.1740 1.0000
EGF receptor signalling pathway 1 0.2710 1.0000
Cadherin signalling pathway 1 0.3100 1.0000
Blood coagulation 1 0.1030 1.0000
Apoptosis signalling pathway 1 0.2350 1.0000
Alzheimer disease-presenilin 

pathway
1 0.2500 1.0000
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which is an essential cofactor for DNMT activity. 
Finally, other studies have shown that ROS can 
lead to DNA hypermethylation due to their 
nucleophilic action on the 5 position of cytosine 
molecule leading to its deprotonation and acceler-
ating its reaction with SAM [115,116]. In sum-
mary, ROS can lead to hypomethylation by 
8-OHdG formation, 5-mC hydroxylation or redu-
cing SAM availability. On the other hand, ROS can 
also lead to hypermethylation by DNMT upregu-
lation or increased recruitment as well as 5-mC 
deprotonation. Despite the counter intuitiveness of 
ROS having opposing effects on DNA methyla-
tion, this ‘dual’ effect may contribute to the 
observed similar opposing effects of radiation on 
DNA methylation.

Secondly, radiation can also cause DNA 
hypermethylation by activation of NF-κB [117–-
117–120]. NF-κB activation leads to alterations 
in DNA methylation through two different 
mechanisms. Firstly, the RelA/p65 subunit of 
NF-κB can directly recruit DNMT-1 to 

chromatin [121]. Secondly, NF-κB regulates 
DNA methylation indirectly by the production 
of Interleukin-6 (IL-6), which has been shown to 
also regulate DNMT1 expression leading to 
increased DNMT1 activity [122–124]. This 
increased availability/activity of DNMT1 subse-
quently leads to hypermethylation.

���������������� ���� ����� ��������� ��������

����������

A number of studies have linked DNA methy-
lation alterations to CVD development [125–-
125–157]. The focus of these studies is mostly 
atherosclerosis as it is the underlying cause of 
most CVDs [158–164]. In most cases, global 
DNA hypomethylation has been observed in 
atherosclerosis [165–170]. This state of hypo-
methylation was detectable in atherosclerosis 
prone murine aorta even before the develop-
ment of atherosclerosis [171]. In addition, 
gene specific hypermethylation has also been 

������� �	� Overview of the shared outcomes of the different studies involving radiation-induced global methylation.
Made with creately (creately.com) and Microsoft Powerpoint. 
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observed in atherosclerosis [147,151,156]. 
Interestingly, focal gene-specific hypermethyla-
tion offers higher biological relevance than that 
of global hypomethylation [162].

We examined the literature concerning differ-
entially methylated genes in CVD (summarized in 
Table 2 of Supplementary Materials). In most 
cases, identified differentially methylated genes 
are associated with key elements in CVD patho-
genesis, such as lipid metabolism, inflammation, 
oxidative stress, atherosclerosis and endothelial 
cell dysfunction. This consequently points to 
a contribution of DNA methylation to CVD 
pathophysiology. However, care should be taken 
when translating DNA methylation data from 
these studies to clinically relevant biomarkers. 
This is in part due to the fact that the effect of 
DNA methylation on gene expression is of 
a complex nature. Several studies have pointed 
out that the state of CpG methylation does not 
always predict the state of gene expression. 
Indeed, examination of the DNA methylation of 
primary human fibroblasts showed that CpG 
methylation alterations did not always translate 
to changes in gene expression [172,173]. 

Furthermore, it was found that better correlation 
with gene expression was encountered with cer-
tain genomic positions (first intron) or associated 
with chromatin states, particularly those that are 
representative of active chromatin and tran-
scribed regions [172,174,175]. Another confoun-
der is that many studies investigating differential 
methylation in CVD are based on a limited, 
rather low, number of samples which casts 
doubt on the capacity to extrapolate the results. 
Therefore, care must be taken when interpreting 
the results originating from low sample size or 
those not backed up with gene expression 
analyses.

The association between altered DNA methyla-
tion and CVD is further proven in experimental 
models of atherosclerosis. Dunn et al. have shown 
DNMT inhibitor 5-Aza-2�-deoxycytidine (also 
known as decitabine) to be effective atheroma 
preventive measures in a ApoE−/- mouse model 
of atherosclerosis [176]. In addition, decitabine 
was shown to decrease atherosclerosis develop-
ment in LDLr−/− mice through decreased macro-
phage inflammation and suppressed macrophage 
endoplasmic reticulum stress [177]. This could be 

��������	� Possible mechanisms of radiation-induced DNA methylation alterations. incident ionizing radiation leads to the production 
of DSBs in affected cells. these DSBs as well as radiation-induced ROS can lead to NF-κB activation which in turn can lead to DNA 
hypermethylation and inhibition of gene expression. on the other hand, radiation-induced ROS can cause varying DNA methylation 
alterations by multiple mechanisms leading to either hypo- and hyper-methylation with differential regulation of gene expression. 
DSBs: double strand breaks, ROS: reactive oxygen species, 8-OHdG: 8-oxo-20-deoxyguanosine, 5-mC: 5-methyl cytosine, SAM: 
S-adenosyl methionine, DNMT: DNA methyltransferase.
Made with Biorender (biorender.com) and Microsoft Powerpoint. 
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explained by decreased methylation and subse-
quent increased expression of liver X receptor α 
(LXRα) and peroxisome proliferator-activated 
receptor γ1 (PPARγ). LXRα and PPARγ are ather-
oprotective as they regulate lipid metabolism and 
macrophage inflammation [178–180]. The inter-
ested reader is referred to a number of reviews 
regarding the use of DNA methylation inhibitors 
as candidates drugs for treating atherosclerosis 
[181–183].

�	�
������� ��������� ��� �������������������������
 ����� ��� ���

In an attempt to validate the involvement of DNA 
methylation in CVD pathogenesis, we performed 
a functional analysis of genes reported in literature 
to be differentially methylated in CVD (Table 1). 
This was done by investigating these genes in the 
pathway analysis functionality of PANTHER (pro-
tein analysis through evolutionary relationships) 
classification system [184,185]. Our PANTHER 
analysis of differently methylated genes in Table 
1 reveals that these genes were connected to 
a number of pathophysiological mechanisms of 
CVD, such as inflammation, oxidative stress and 
endothelial activation. In addition, four pathways 
showed statistically significant pathway involve-
ment, namely Janus kinase/signal transducers and 
activators of transcription (JAK/STAT) signalling 
pathway, interferon-gamma (INF-γ) signalling 
pathway, phosphoinositide 3 kinase (PI3K) path-
way and interleukin signalling pathway. This 
should come as no surprise as these pathways are 
associated with cardiac myocyte response to injury 
and stress as well as cardiovascular inflammation 
[186–194]. Activation of JAK/STAT signalling 
contributes to atherosclerosis development by aid-
ing immune cell recruitment and vascular smooth 
muscle proliferation, hypertrophy, and migration 
[195]. In addition, STAT1 synergizes with NF-κB 
in its inflammatory signalling [196]. Conversely, 
IFN-γ promotes endothelial cell adhesion, 
immune cell recruitment with a conflicting effect 
on foam cell formation [197–199]. Also, PI3K 
catalyzes second messenger phosphatidylinositol 
(3,4,5)-trisphosphate (PIP3) production. In the 
heart, four isoforms (PI3Kα, PI3Kβ, PI3Kδ, and 

PI3Kγ) are differentially expressed in different cell 
subsets (cardiomyocytes, fibroblasts, endothelial 
cells and vascular smooth muscle cells). 
Subsequently, they are associated with varying 
effects on myocardial contractility, physiological 
growth and pathobiological remodelling as well 
as smooth muscle cell and immune cell migration 
[200–202]. In addition, PI3Ks function as scaffold-
ing proteins in cardiac excitation-contraction cou-
pling and autophagy [201]. Finally, interleukins 
are a family of cytokines strongly associated with 
chronic inflammation and atherogenesis. Some 
interleukins can have proatherogenic effects while 
fewer interleukins can have atheroprotective 
effects [197,203–208]. These DNA methylation 
alterations in pathways associated with atherogen-
esis suggest a usefulness for DNA methylation 
based CVD biomarkers. First, Istas et al. found 
that differentially methylated regions in BRCA1 
and CRISP2 genes were reproducibly differentially 
methylated in independent atherosclerotic human 
aorta tissue and human carotid plaque samples 
[156]. In addition, these methylation changes at 
BRCA1 and CRISP2 genes were consistently asso-
ciated with subclinical atherosclerosis in an inde-
pendent sample cohort of middle-aged men. This 
study provides a concrete example of how gene- 
specific methylation could be used to monitor the 
development of atherosclerosis, even before the 
condition is clinically diagnosable [156]. Second, 
p16INK4a was found to be differentially methylated 
by IR while also influencing epicardial adipose 
tissue development and subsequent CVD risk 
[209]. This intersection of gene-specific methyla-
tion alterations observed after radiation and asso-
ciated with CVD could offer an untapped source 
of functional biomarkers.

Conclusions and future directions

DNA methylation is an epigenetic mechanism that 
has been shown to be implicated in the pathogen-
esis of many diseases. In healthy individuals, the 
CpG islands in promoter regions are normally 
non-methylated thereby allowing their associated 
genes to be transcriptionally active. For the rest of 
the genome, CpG dinucleotides are normally 
methylated. Predictably, alterations in DNA 
methylation lead to changes in gene expression.

EPIGENETICS 11



Ionizing radiation has been shown in several 
studies to cause DNA methylation alterations; 
most commonly global DNA hypomethylation 
and gene-specific hypermethylation. However, stu-
dies investigating radiation-induced DNA methy-
lation alterations vary in radiation LET and dose, 
type of investigated model as well as the sampling 
timeline. These variations make it difficult to 
answer important questions regarding the possible 
differences in effect on DNA methylation between 
high and low LET radiation, as well as if there is 
a dose threshold that needs to be reached to cause 
DNA methylation alterations. However, the persis-
tence of radiation-induced DNA methylation 
alterations after IR exposure suggests the involve-
ment of these DNA methylation alterations in 
radiation-induced late effects.

On the other hand, several studies reported 
global hypomethylation in CVD and specifically 
in atherosclerosis. In addition, hyper- and -less 
commonly- hypo-methylation of specific genes 
has also been reported in CVD. Through 
a gene ontology analysis, we found that the 
genes that have been reported to be differentially 
methylated in CVD are associated with pathways 
related to CVD pathogenesis, such as endothelial 
activation, oxidative stress and inflammation.

One of the most common adverse effects of med-
iastinal radiotherapy is radiation-induced CVD, 
which has the same presentation as atherosclerosis. 
Radiation-induced DNA damage, oxidative stress 
and inflammation are considered as major molecular 
drivers of radiation-induced CVD. Various thera-
peutic techniques have been employed to reduce 
the accidental irradiation of the heart during radio-
therapy such as prone position radiotherapy, image- 
and dose- guided radiotherapy, IMRT, SBRT and 
DIBH. However, despite substantially reducing the 
dose of the accidental irradiation, radiation-induced 
cardiac events continue to occur. Furthermore, 
research is exploring protective agents which inter-
fere with one or more of the identified pathophysio-
logical mechanisms of radiation-induced CVD 
mainly through reducing chronic inflammation 
and oxidative stress [44,210,211]. In addition, non- 
traditional therapies against CVD are worth 
exploring

The late-onset aspect of radiation-induced 
CVD constitutes a diagnostic challenge to timely 

initiation of cardioprotective therapy. 
Interestingly, radiation-induced DNA methyla-
tion alterations are notable immediately after 
irradiation and often persist long after it. 
Therefore, DNA methylation alterations in 
radiation-induced CVD could serve as novel, 
early biomarkers e.g. p16INK4a.

To the extent of our knowledge, no experimen-
tal research has directly investigated the correla-
tion between radiation-induced DNA methylation 
alterations and resultant CVD. Previous research 
suggests the possibility of performing targeted 
DNA methylation [212] and demethylation 
[213,214]. This would allow studying the effect of 
prevention/induction of radiation-induced methy-
lation alterations of specific genes. Subsequent 
effects on gene expression and induction of CVD 
pathophysiology could then serve as a means to 
test our theory. It is therefore our recommenda-
tion that future studies direct their attention to 
examining targeted radiation-induced DNA 
methylation alterations and their involvement in 
CVD pathogenesis. [194,215–271]
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